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Abstract

In this paper, I study how voluntary labor supply decisions within an organization

impact workplace injury using novel data on the payroll and workers’ compensation

claims of Los Angeles traffic officers. I use the leave taken by coworkers as an instrument

to estimate the causal effect of daily labor supply decisions on workplace injury. Self-

selection via voluntary labor supply reduces injuries by 48 percent compared to the

underlying injury rate. I decompose selection into a predictable component that could

be accomplished via direct assignment on observables by a manager, and a private

component known only to the individual worker. I show the vast majority of the

effect is driven by the private component, implying decentralized overtime assignment

mechanisms like shift auctions are an effective way to reduce organizational injury

rates.
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1 Introduction

Workplace injury is a large economic burden. In the United States, injuries on the job cost

$170.8 billion in 2018 alone. Such a cost is comparable to that of more well-known medical

issues like heart disease.1 However, much of the risk-relevant information is known only

by the worker. A worker knows if they slept enough the night before. They know if they

are feeling sick. They know if they drank too much alcohol at a party yesterday. They

understand best their own physical capacity to safely work. At the same time, labor supply

varies greatly across people (Blundell, Bozio, and Laroque 2011). Among Los Angeles traffic

officers, a city report documents that in a single year, one worker earned $15 in overtime

while another earned over $100,000 (Galperin 2015). How do such voluntary labor supply

decisions impact workplace injury?

To answer this question, I develop a framework for understanding the connection between

labor supply and workplace injury within an organization. I apply the framework to novel

high-frequency panel data which details Los Angeles traffic officer work patterns, pay and

workers’ compensation claims. I use variation in the leave of coworkers to identify how labor

supply varies with injury risk. I find daily labor supply is downward sloping in injury risk:

officers are less likely to work when they are more likely to be injured. This self-selection

generates an observed injury rate among Los Angeles traffic officers that is at least 48 percent

lower than the underlying average injury rate. My framework allows me to decompose selec-

tion against injury into a part that could be deduced by an analyst (predictable component)

and part known only by the worker (the private component). For traffic officers, 96 percent

of selection is attributable to the private component. The vast majority of injury mitigation

comes through unobservable selection that could not be replicated by a manager assigning

shifts directly.

This paper has an important practical implication: carefully designed overtime assign-

ment mechanisms can reduce injuries within organizations. Because so much of selection is

due to private factors, mechanisms which encourage workers to act on risk-relevant private

information will lower injury rates. An auction which awards extra shifts to the workers who

bid the lowest wage is one such mechanism. I compare such shift auctions to a system where

workers are put in a random list and given the option to accept or reject a shift. I show via

simulation that shift auctions result in 11% fewer injuries than the list mechanism.

This paper has three primary contributions: one methodological and two substantive.

Methodologically, it provides a framework which links intensive margin labor supply with

1The CDC estimates that in 2014-2015, the annual cost of heart disease was around $219 billion (Heart
Disease Facts 2020).
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workplace injury risk. This framework formalizes the connection between the willingness to

work and the propensity to be injured. Given a sufficiently strong instrument, it also allows

the researcher to identify the average underlying injury rate: the probability of injury of a

randomly drawn worker who is forced to work on a random day. I show the approach is

numerically equivalent to a marginal treatment effects (MTE) strategy. MTE equivalence

allows the researcher to leverage recent advances in the literature to decompose the link

between injury and labor supply into a portion due to predictable willingness to work and

private willingness to work. The relative importance of these components has an economic

interpretation. When the predictable portion is large, a central planner or manager can

greatly reduce the injury rate by assigning work using only observables. When the unpre-

dictable portion is large, reducing the injury rate requires eliciting the private information

of workers using an appropriate mechanism like an auction.

Substantively, this paper contributes to the large literature across economics, public

health and epidemiology which studies the relationship between overtime and health. These

papers use data covering a large number of diverse individuals to estimate the association

between workplace injury and overtime (Dembe et al. 2005, Kim et al. 2016, Conway et al.

2017). My paper is complimentary: while it is less externally valid, it is more internally valid.

I account for unobserved selection into overtime, and in so doing uncover the causal effect

of an additional day of work on workplace injury. Importantly, my approach distinguishes

between the observed injury rate and the counterfactual average underlying injury rate.

I show that for Los Angeles traffic officers, the two are very different quantities. Most

of the prior literature focuses on the observed injury rate. Although I cannot claim that

my estimates hold for the general population, my results show it is dangerous to equate

the observed injury rate with the average underlying injury rate. Estimating the average

underlying injury rate requires accounting for labor supply-induced selection. Failing to do

so biases estimates towards zero.

The second substantive contribution is to the labor supply literature in economics. Es-

timates of the intensive margin of labor supply abound in the labor economics literature

(Liebman, Luttmer, and Seif 2009, Bargain, Orsini, and Peichl 2014, Blundell, Bozio, and

Laroque 2011 , Chetty 2012). I complement this literature by demonstrating how injury risk

can be an important unobserved confounder when estimating the elasticity of labor supply

with respect to the wage. For a particular occupation, I show that labor supply is more

elastic when injury is more likely. Because injury risk varies across jobs and also across the

life cycle, this can help researchers interpret differences in labor supply elasticities by age

and occupation. It is likely that some of the documented heterogeneity in elasticities is due

not just to differences in preferences but also differences in injury risk.
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Third, this paper contributes to the literature on compensating differentials (Moran and

Monje 2016, Parada-Contzen, Riquelme-Won, and Vasquez-Lavin 2013, Kuhn and Ruf 2013,

Viscusi and Aldy 2003). Only recently has the literature begun focusing on workplace safety

as a firm specific amenity that can be adjusted (Lavetti 2020, J. M. Lee and Taylor 2019,

Charles et al. 2019). I reinforce this finding by showing that the way overtime is assigned

can greatly change the injury rate at a specific firm. On the worker side, Viscusi and Hersch

2001 and Guardado and Ziebarth 2019 make the important point that workers have some

control of their own workplace safety. I affirm this, and suggest a specific pathway: workers

can reduce risk by only working shifts when their injury risk is low.

The paper proceeds as follows. I begin by introducing a framework that links high-

frequency labor supply decisions and injury risk. I then introduce the data and institutional

details. Third, I present the main results of estimation. Fourth, I discuss the implications

the results hold for shift assignment mechanisms and labor supply elasticities. For those

interested, the Appendix documents how my results can be used to estimate the value of a

statistical injury.

2 Conceptual Framework

In this section I develop a framework that links high-frequency labor supply decisions and

individual injury risk. The framework allows the researcher to estimate whether labor supply

decisions mitigate or propagate injury risk within an organization. Throughout, I refer to

workers as “officers” because I will utilize my framework to study Los Angeles traffic officers.

However, the framework is general and can be applied to other settings.

There are N officers indexed by i who make daily decisions to work on dates t = 1, 2, .., T .

Denote the binary work decision Wit and the binary injury outcome Y ∗
it . Y ∗

it is the true

underlying injury outcome, which is only observed when an individual works. When an

officer does not work, Y ∗
it is counterfactual. I specify that Y ∗

it is determined by the following

equation:

Y ∗
it =

1 if X ′
itβ + Ci2 + Uit2 ≥ 0

0 otherwise
(1)

Xit represents time-varying controls including date fixed effects. The sum Ci2+Uit2 represents

what I call private injury risk. It is private because it is unknown to the analyst or the

organization but may be partially known by the officer. Ci2 represents time-invariant, person-

specific injury risk. It captures factors like chronic health conditions (obesity, heart disease,

diet, etc) and demographics. Uit2 represents factors that make a particular officer more likely
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to be injured on a particular day. X ′
itβ is predictable injury risk, because an organization

can predict it given sufficient data.

If an officer does not work then Y ∗
it is not observed (it is counterfactual). This induces a

selection problem. The analyst only observes injury outcomes among individuals who work.

Denote Yit as the injury outcome that is observed. Then I have that observed injury is the

product of the work decision and underlying injury outcome. Formally:

Yit = Y ∗
it ·Wit (2)

Each officer decides to work if the expected utility of work is greater than not working. The

utility of work relative to not working takes the linear form Z ′
itα + Ci1 + Uit1. Thus the

decision to work is given by:

Wit =

1 if Z ′
itα + Ci1 + Uit1 ≥ 0

0 otherwise
(3)

Zit includes all factors in Xit as well as at least one time-varying instrument. The sum

Ci1 + Uit1 represents private willingness to work. It is private because it is unknown to the

analyst or the organization but is known by the officer. Similar to the injury unobservables,

Ci1 represents unobserved time invariant taste for work, due to things like a greater enjoyment

from the job, or a lower value of leisure. Uit1 represents unobserved time varying taste for

work, driven by factors like wealth shocks, family events, or insufficient sleep the night before.

Z ′
itα is predictable willingness to work, because an organization can predict it given sufficient

data.

In order to model the private component of selection in a way that is both simple and

flexible. Thus, I specify that private willingness to work and private injury risk are jointly

normally distributed, and are independent of all other variables conditional on person-specific

means of all time-varying observables (denoted Z̄i).

Assumption 1 Conditional on Zi, Xi:(
Ci1 + Uit1

Ci2 + Uit2

)
∼ N

([
Z̄iγ1

Z̄iγ2

]
,

[
1 ρ

ρ 1

])

where −1 ≤ ρ ≤ 1 and throughout Φ(·) is the standard normal CDF.

This approach allows within-worker mean dependence between the unobserved components
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and the components of Zit. For the rest of the paper I implicitly include Z̄i in Zit and Xit.
2 I

will often plot and refer to the demeaned quantiles of the two private components as Vi1, Vi2:

Vi1 := ϕ−1(Ci1 + Uit1 − Z̄iγ1) Vi2 := ϕ−1(Ci2 + Uit2 − Z̄iγ2)

These have a more natural scale and they connect directly to percentiles and to the well-

known idea of treatment resistance.

2.1 Parameters of Interest

This framework is useful because it allows me to formally define and estimate the following

three important quantities:

1. Observed Injury Rate: This is the probability of injury conditional on working. It

is defined as:

E[Y |W = 1] = E[Y ∗|W = 1]

It can be estimated as the number of injuries divided by the number of shifts worked.

2. Average Underlying Injury Rate: This is the expected probability of injury of a

random officer forced to work on a random date. It is defined as:

E[Y ∗] = EX [Φ(X
′β)]

3. Labor supply as a function of private injury risk: This quantifies how labor

supply varies with private injury risk. I denote this function as L(v) throughout and

it is defined and can be estimated as:

L(v) = Φ

(
z′α + ρΦ−1(v)

(1− ρ2)1/2

)
The framework allows me to speak precisely about selection and the connection between

labor supply and injury risk. If there is selection against injury the average underlying injury

rate should be higher than the observed injury rate, that is:

E[Y ∗] > E[Y |W = 1] (4)

To understand how private injury risk enters the labor supply function, we can analyze

L(v).

2This vastly simplifies notation.

6



Lemma 1 L(v) is strictly decreasing if and only if ρ < 0.

Lemma 1, which is proved in Appendix Section A.1, establishes that whether L(v) is upward

or downward sloping depends only on the sign of ρ, an estimated parameter. If ρ < 0, labor

supply is downward sloping in private injury risk, and the data is consistent with officers

using labor supply decisions to avoid injury. If ρ > 0, labor supply is upward sloping in

private injury risk, and the data is consistent with officers using labor supply decisions to

induce injury.

Sleep is a good way to illustrate these ideas. Recent work suggests that people are aware

they are too sleepy to drive (Williamson et al. 2014), and driving is a major part of traffic

officer’s jobs. However, most supervisors do not know how well-rested a given employee is

on a given day. Therefore the number of hours of sleep the night prior to a shift is private

information about an employee’s ability to work safely. If officers avoid working shifts on

days when they are sleep deprived, we would expect ρ to be negative.

The direction of the inequality in equation 4 determines the overall direction of selection.

However, we can decompose overall selection into predictable and private components. The

private component is captured by the correlation between private injury risk (Ci2+Uit2) and

private willingness to work (Ci1 + Uit1). Under the normal specification, this correlation is

fully captured by ρ. A negative correlation between these components is consistent with an

officer possessing private risk-relevant information and using this information to mitigate

injury. A positive correlation is consistent with officers possessing private information and

using it to exacerbate injury. Predictable selection is captured by the correlation between

Z ′
itα and X ′

itβ.

2.2 A Connection to the Marginal Treatment Effect

My framework connects naturally to the marginal treatment effect, as introduced in Heckman

and Vytlacil 1999. Work is the treatment, and officers are induced to take the treatment by

an instrument, in my case leave of coworkers. The outcome of interest is workplace injury.

Because a worker cannot be injured if they do not work, we have that Yit(0) = 0. Thus the

treatment effect is exactly Yit(1)−Yit(0) = Yit(1), that is the probability of injury conditional

on work. The marginal treatment effect of work on workplace injury, is then given by:

MTE(ũ, x) = Φ

(
X ′

itβ − ρΦ−1(ũ)

(1− ρ2)1/2

)
(5)

where ũ is unobserved resistance to treatment (work). It connects directly to the quantiles

introduced earlier: ũ = 1−Vi2. It follows directly from Lemma 1 that the MTE is increasing
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in ũ if ρ is positive, just like labor supply as a function of unobserved injury propensity.

In this way, the MTE approach is the dual of the labor supply approach. One perspective

asks how additional injury risk impacts average labor supply. The other asks how inducing

additional labor supply changes the injury rate among marginal workers.

The duality clarifies that my empirical strategy is a marginal treatment effects approach

in a panel data setting. The main differences from typical applications of the marginal

treatment effect are that I explicitly account for the binary outcome and I relax the usual

exclusion restriction. These two adjustments are crucial because workplace injury is quite

rare and very little demographic information is available.

Given this equivalence, I can leverage recent developments in the marginal treatment

effects literature. In particular, I follow X. Zhou and Xie 2019 and express the marginal

treatment effect as a function of the propensity to be treated rather than covariates (Xit):

˜MTE(ũ, p) = EXit
[MTE(ũ, Xit)|Φ(Z ′

itα) = p] = EXit
[Φ

(
X ′

itβ − ρΦ−1(ũ)

(1− ρ2)1/2

)
|Φ(Z ′

itα) = p]

Now the marginal treatment effect is a function of two scalars with straightforward inter-

pretations. ũ is unobserved resistance to work. This maps directly to private willingness to

work:, specifically ũ = Φ−1(−Ci1 − Uit1). p is propensity to work. This maps directly to

predictable willingness to work, specifically p = Φ(Z ′
itα). Thus we can project selection into

a private and predictable dimension.

Intuitively, a savvy manager could use historical data and institutional knowledge to

derive the predictable component, p. This manager could then use these predictions to

assign work to minimize injury. Not so with the private component. Even the most savvy

manager can only derive the average relationship, and will never know the exact ũ for a

particular officer on a particular day. This private component captures many things, most

prominently private health information, like how much an officer slept or drank the night

before. A key element of this paper is estimating the relative importance of the private and

public components. If the private component dominates, then an organization which wants

to reduce its injury rate will need to design mechanisms which essentially elicit private

information from workers. In the language of the mechanism design literature, incentive

compatibility will be important.

3 Data and Institutional Details

In this section I present an overview of the population being studied: Los Angeles traffic

officers. I first review the details of the traffic officer job, overtime assignment, and pay
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structure. I then present some descriptive statistics and associations observed in their pay

and workers’ compensation data.

3.1 Institutional Details

The population of workers studied in this analysis are Los Angeles traffic officers. The city

of Los Angeles is divided into 18 divisions, and work assignments, including overtime, are

controlled at the division level. Throughout this study, I will refer to officers who work in

the same division (work location) as “coworkers.”

Los Angeles traffic officers control their labor supply mainly by working additional over-

time shifts. Traffic officers are union employees covered by the Memorandum of Understand-

ing 18 (MOU) between the City of Los Angeles and Service Employees International Union

Local 721.3 According to the MOU, traffic officers are non-exempt employees eligible for

overtime pay under the Fair Labor Standards Act (Department of Labor 2017). The MOU

describes the manner in which officers are paid for regular as well as overtime and ”early

report” hours. The city is required to pay a minimum of four hours of premium pay if an

employee is required to return to work “following the termination of their shift and their

departure from the work location” (MOU, 30). If an officer is required to come into work

earlier than their regularly scheduled time, they must be paid one and a half times their

hourly rate for the amount of time worked prior to the regularly scheduled time (MOU, 32).

Over 150,867 hours were billed to overtime pay codes in calendar year 2015. This overtime

comes from three sources. First, there is overtime arising from excess demand for traffic

control due to something like an emergency (i.e. a pipe burst or a broken traffic light).

Second, there is overtime generated by the absence of a scheduled officer during a normal

shift. The data reveals that officers take leave for all sorts of reasons, including bereavement,

sickness, vacation, jury duty, etc. For a full list of the various types of leave see Appendix

Table B.12. Finally, there is special events overtime, which based on city reports is likely the

main source of overtime. Special events include the Los Angeles Marathon, Dodger games,

the Oscars, parades, and protests.

The MOU describes the general policy for the assignment of overtime amongst traffic of-

ficers. “Management will attempt to assign overtime work as equitably as possible among all

qualified employees in the same classification, in the same organizational unit and work lo-

cation” (MOU, 27). Employees must also be notified 48 hours in advance for non-emergency

overtime and unofficial overtime that is not sanctioned by a supervisor is “absolutely pro-

hibited” (MOU, 28). Workers cannot add additional hours to their shift unless authorized.

3The version reviewed is available online: cao.lacity.org/MOUs/MOU18-18.pdf
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For this reason my paper focuses on the decision to work additional shifts rather than the

decision to work additional hours.

The specifics on overtime is assigned to individual officers are not spelled out in the MOU.

However, a report by the City Controller’s office (Galperin 2015) gives more details about

special events overtime. Special events overtime is assigned using a mechanism officers call

“spinning the wheel.” The generation and assignment of overtime is summarized in Figure

1.

Figure 1: The Overtime Assignment Process

Under the wheel spin system, officers first volunteer to be on an overtime list. Each

month, the list is sorted according to seniority. As special events become available they are

offered sequentially to officers in the order they appear on the list. Once offered a shift, an

officer may work it or find a substitute. As more shifts become available it is necessary to

request officers from further down the list.

This institutional setting allows me to use leave of coworkers as an instrumental variable

to achieve identification. Consider how a coworker (j) going on leave impacts an officer (i).

If j goes on leave, two things occur. First, when j goes out sick, the department must “find
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replacements to perform the individual’s regular job duties.” Thus the absence generates

overtime. Second, j’s absence means there is one less person in the division (work location)

who can take on additional overtime. Both forces lead to an increase in the probability that

i will work. It is this variation that I will exploit in order to identify the underlying injury

rate.

A reader may be concerned that officers which do not volunteer never have to work

overtime. If there are always sufficient volunteers to fill any need, this issue could threaten

identification. However, Galperin 2015 states that while only 192 officers signed up to vol-

unteer in FY 2013-20144, 471 officers worked overtime. This is evidence that management

occasionally exhausts the volunteer list and has to force force non-volunteers to work over-

time.

Finally, traffic officers are an ideal population for exploring how injury risk affects labor

supply decisions. They receive frequent opportunities to choose to work additional shifts. At

the same time, traffic officers represent a middle ground among public safety occupations.

The closest occupation with statistics on the BLS website for 2019 was crossing guards and

flaggers.5 In 2019, the nonfatal injury incidence rate was 128.6 injuries per 10,000 workers

(Incidence rates for nonfatal occupational injuries and illnesses 2020). This was above the

incidence rate for firefighters (56.2) and below the incidence rate for police officers (733.8).

Traffic officers are representative of occupations where hazards are present (e.g. fast-moving

traffic, hot weather) but not pervasive (e.g. carrying a gun, investigating violent crimes).

3.2 Data

The analysis population is limited to full-time officers with at least one work-related pay

record between January 1, 2015 and September 1, 2016. Additional details regarding how

the sample is constructed are listed in the Appendix A.4. The result of the data construction

process is an unbalanced daily panel of 553 traffic officers. Table 1 reports descriptive

statistics at the officer and officer-date level. The typical officer is around 45 years old and

is observed working 332 days.

4This is the year prior to my analysis period which spans part of FY 2014-2015 and FY 2015-2016.

5Traffic officers are not exactly crossing guards but are also not exactly police officers.
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Table 1: Descriptive Statistics

Panel A: Officer Statistics

Mean Std. Dev. p10 p50 p90
Days Observed 469.91 155.31 194.00 544.00 573.00
Days Worked 332.11 127.88 100.00 379.00 447.00
Injuries Observed 0.46 0.76 0.00 0.00 1.00
Divisions Worked 1.25 0.46 1.00 1.00 2.00
Age 45.14 9.73 32.03 44.65 58.31
Observations 553

Panel B: Officer-Date Statistics

Mean Std. Dev. p10 p50 p90
Worked 0.71 0.46 0.00 1.00 1.00
Hours Worked 6.35 4.67 0.00 8.00 12.00
Overtime Pay Hours 1.08 2.74 0.00 0.00 5.00
On Leave 0.02 0.13 0.00 0.00 0.00
Hours on Leave 0.08 0.78 0.00 0.00 0.00
Injured 0.00 0.03 0.00 0.00 0.00
Coworkers on Leave 8.36 8.36 0.00 5.00 21.00
Wage 30.10 2.30 26.64 30.54 32.22
Seniority Rank 30.44 25.36 3.00 22.00 71.00
Observations 259,861

[1] Age as of January 1, 2015.
[2] Wage is maximum base rate observed on the date.
[3] Worked, On Leave and Injured are indicator variables.

Table 1 also includes summary statistics on injuries. I define an “injury” as the submission

of a workers’ compensation claim. The vast majority of claims list medical expenses paid

out, implying that the claim was approved and a real injury occurred. The probability that

an injury will occur on any given day is quite low. However, 34 percent of officers are injured

at least once in the period studied and 10 percent of officers are injured multiple times. The

cause and nature of injuries are tabulated in Appendix Table B.3. Most injuries are related

to the fact that traffic officers work outside in heavy traffic: officers can be sideswiped, get

into car accidents, or suffer heat-induced injuries. Injuries span the gamut from superficial

to serious.

Table 2 describes variation in time worked across officers. Panel A presents statistics for

the distribution of the hours worked in a day. Panel B presents statistics for days worked

in four-week periods. Because an injury causes officers to subsequently miss work, Panel B

excludes data after the first observed injury.

From these tabulations of work patterns two things are apparent. First, there is much
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more variation in the days per shift than the hours per day. The inter-quartile range of shift

length is 0, while the inter-quartile range of days worked in four weeks is 5. For this reason

I focus on the variability in the number of days rather than the number of hours. Second,

employees who experience injury tend to work fewer days per month than those who do not.

This fact suggests more injury-prone officers work less.

Table 2: Distribution of Time Worked

(a) Daily Hours Worked

Mean Std. Dev. p10 p50 p90
Not Injured 9.00 2.70 8.00 8.00 13.00
Injured 8.94 2.62 8.00 8.00 13.00
Total 8.98 2.67 8.00 8.00 13.00
N 183659

(b) Days Worked in Four Week Period

Mean Std. Dev. p10 p50 p90
Not Injured 18.15 4.44 13.00 19.00 23.00
Injured 17.54 4.24 12.00 18.00 22.00
Total 18.03 4.41 13.00 19.00 23.00
N 8378

Table 2 displays the distribution of work at the hourly and daily margins. It should

be noted that in Panel A, the sample is restricted to days with positive hours worked. In

Panel B, the sample is restricted to 4 week periods with at least one day with positive hours

worked.

Table 3 describes officer compensation. Most individuals earn a wage that is a little less

or a little more than $30 per hour. This is consistent with a common wage schedule which is

set during negotiations between the union and the city. Overtime on average represents 12

percent of pay, but this masks a highly skewed distribution. At least 50 percent of officer-

weeks do not have overtime pay, while 10 percent are comprised of more than 33 percent

overtime pay. Again these statistics indicate that schedules vary most in terms of number

of days worked rather than number of hours worked per day.
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Table 3: Pay Composition Statistics

Mean Std. Dev. p10 p50 p90
Hourly Wage 30.10 2.33 26.56 30.54 32.22
Regular Pay 1236.11 716.25 244.00 1220.00 2135.00
Overtime Pay 287.60 488.18 0.00 0.00 967.00
Proportion OT 0.11 0.14 0.00 0.00 0.33
Observations 43004

Note: Overtime and straight time are classified based on Variation Description.
Wage is the maximum observed base wage during that day. During non-work
days it is interpolated.

3.3 Descriptive Evidence of Self Selection

The purpose of this section is to show selection against injury is a robust pattern observed in

the data, and not an artifact of the framework introduced earlier. If individuals incorporate

their own private information about injury risk into their labor supply decisions, and we as-

sume individuals dislike being injured, we should observe positive selection in the data. That

is, the probability of injury among officers who work on any given day should be lower than

the probability that would result from randomly forcing an officer to work. Mathematically,

it should be true that:

E[Y ∗] > E[Y |W = 1]

To trace out how unobserved selection influences injury, I use variation in the leave of

coworkers as an instrument. When more coworkers go on leave in a division, management

is left with more open shifts and fewer officers to fill those shifts. This should increase the

probability that any given officer who is not on leave works without impacting that officer’s

injury risk directly. We can visually check for selection by graphing a binned scatter plot of

injury against the number of hours of leave taken by coworkers. I do this in Figure 2.
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Figure 2: Evidence of Selection Against Injury. This figure plots the average probability of injury
conditional on different values of coworker leave. The probability rises with coworker leave, evidence that
the officers select against injury.

Figure 2 demonstrates that as leave of coworkers increase, the injury probability also

rises. This is consistent with self-selection against injury. When officers are given the choice

to work, they prefer not to work when their injury risk is elevated. When more coworkers go

on leave management must force other officers to work, making the pool less selected thus

bringing the injury rate closer to the underlying injury rate.

Comparing regression coefficients makes the same point. In Appendix Table B.6 I regress

injury on work. The coefficient on work is exactly the average underlying injury rate if

selection is random. In Table B.13, I perform several fixed-effects instrumental variable

regressions. Comparing any two columns in the tables, we see that the naive estimate

is much lower than the instrumental variables estimate. Just as in Figure 2, this result

suggests that voluntary labor supply decisions result in selection against injury.

Although these arguments are helpful to establish the presence of selection, quantifying

the magnitude and computing the average underlying injury rate requires the framework

introduced earlier. I now turn to identification and estimation of the key parameters in the

framework.
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4 Empirical Strategy

The main threat to identification of the average underlying injury rate is that injury risk

is likely correlated with the decision to work. Indeed, the entire premise of this paper is to

understand the nature of this dependence. To identify and adjust for unobserved selection,

I exploit variation in the number of coworkers who are out on leave. When more coworkers

go on leave in a division, management is left with more open shifts and fewer officers to fill

those shifts. This should increase the probability that any given officer who is not on leave

works without impacting that officer’s injury risk directly.

My identification strategy is best described as an instrumental variables approach in a

binary panel data setting using leave of coworkers as the instrument. Estimation is performed

using partial maximum likelihood, with expressions for the likelihood given in Appendix

Section A.3. As noted in Semykina and Wooldridge 2018, models of this type camn be

estimated as pooled Heckman selection probit models. As a result, I estimate the parameters

using Stata’s built-in ‘heckprobit’ command with the addition of person-specific means (Z̄i)

in the selection and outcome equations. Standard errors are clustered at the officer level to

account for within officer serial-correlation.

The main assumptions required for identification in my model involve the excluded in-

strument. Leave of coworkers must be properly excluded from the injury equation, it must

be sufficiently relevant to the work decision, and it must generate sufficient variation in the

support of the propensity to work. I provide evidence that these assumptions are satisfied in

Section 4.2. The panel structure of the data allows me to relax the exclusion restriction to

allow for individual-specific mean dependence between the instrument and the unobserved

components.

The reader may wonder why I impose parametric structure on the estimated model,

given that the underlying strategy is essentially an instrumental variable approach. This is

because injury is a rare outcome and the data is not large enough to accommodate more

flexible approaches. This appears to be without loss: my main qualitative findings exist

without the structure.6 Other readers may wonder why I do not use a linear probability

model. I do not do this because injury is a rare event and I am concerned with computing

the injury rate across the distribution of willingness to work. A linear probability model will

result in estimates that are outside the unit interval.

6See the descriptive evidence section.
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4.1 Variable Construction

On date t for officer i “leave of coworkers” is constructed as the number of officers in the

same division as i on date t that are out on leave for eight or more hours. The majority

of variation is therefore at the division-date level. I exclude leave taken by officers who are

observed to have worked that day, since such leave might be correlated with injury risk on

that specific date and thus violate the exclusion restriction.

In the estimation of the probability of injury, the Xit’s includes age, the officer’s wage, the

officer’s seniority rank within the division on date t, division indicators (with small divisions

grouped together), and a full set of date fixed effects. Because injury is rare and binary,

including date fixed effects comes at the cost of lower statistical power. It weakens the

assumptions for identification but it means dates which do not have injuries will not be used

during estimation because their log-likelihood estimate is undefined. The effective estimation

sample therefore reduces from 259,861 to 80,898 officer-days. All 553 officers remain in the

effective sample.

The Zit variables in the probability of working equation include everything contained in

Xit’s as well as leave of coworkers to satisfy the exclusion restriction. Z̄i includes officer-

specific time averages of leave of coworkers and wage. Seniority rank, division, date indicators

and age are excluded from Z̄i because they are highly co-linear with time. For example, age

can be perfectly predicted from average age and date indicators.7

4.2 Instrument Validity

Identification of the model requires leave of coworkers to be a valid instrument: it must be

properly excluded from the injury equation and relevant to the work decision. I provide

statistical and then theoretical arguments that these assumptions are satisfied. Fortunately,

the requirements for identification are weaker than the typical exclusion restriction. The

panel nature of the data allows the mean of the leave of coworkers to directly impact the

injury outcome. Formally, this is reflected by the fact that Z̄i enters the injury equation.

To statistically test the exclusion restriction I conduct a balance test using medical ex-

penses of an injury as a proxy for injury severity. I first restrict the data to the officer-dates

with an injury outcome. I then sum the medical expenses paid in the associated workers’

compensation claim. Intuitively the exclusion restriction requires that leave of coworkers

only impact the binary injury outcome by inducing officers to work. If leave of coworkers is

correlated with the severity of an injury this suggests some sort of direct effect. I find no

7As a result of the lack of variation, trying to include these variables causes convergence problems.
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evidence that the exclusion restriction is violated. The results are presented in Appendix

Table B.14. There seems to be no correlation between the severity of an injury and the leave

taken by coworkers.

Figure 3 presents graphical evidence that leave of coworkers is relevant to the work deci-

sion. The figure displays a binned scatter plot of work probability and coworkers on leave,

with equally spaced bins by number of coworkers on leave. The relationship is generally

upward sloping, indicating a positive link between the instrument and work probability.8 As

a statistical test, I present F-statistics of an analogous linear probability model of work on

the leave of coworkers in Table B.7. All F-statistics are greater than 99. The coefficient on

coworker leave is also highly significant in all specifications. Overall the table suggests in-

strument relevance is satisfied. Additional formal tests of weak instruments are documented

in Appendix Section A.6. All tests support the assumption that leave of coworkers is relevant

to the work decision and not a weak instrument.
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Figure 3: Instrumental Relevance. The figure visualizes the relationship between coworkers on leave
and probability of working overtime, with relative frequencies underneath. Each circular dot represents each
of the values taken on by coworker leave on the x-axis and the corresponding average probability of work for
those observations. As the number of coworkers on leave increases, the probability an officer works rises.

8In the Appendix I provide a binned scatter plot which does not interpolate between bins. This plot also
supports relevance.
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These results appear consistent with our theoretical intuition. Conditional on Xit and

Z̄i, “coworker leave” must only impact injury through the decision to work. For many forms

of leave, like bereavement and jury duty, this seems likely to be satisfied. The death of

a coworker’s relative is unlikely to affect own work conditions or own health status. For

other forms of leave, such as vacations or floating holidays, this requirement is conditionally

satisfied. That is, people may tend to take vacations during times of the year when weather

conditions contributing to injury risk prevail. For example, more vacation may be taken

during the summer when heat exhaustion is a factor. But I control for date fixed-effects,

and conditional on these, there is likely no dependence. Use of sick leave might violate the

exclusion restriction if coworkers are likely to infect each other. To address this concern

I estimate the main parameters using a leave instrument that does not include sick time.

These estimates are in Appendix Table B.8 and are discussed in more detail in the robustness

section.

Leave of coworkers must also be relevant. Recall that the LADOT uses a “spin the wheel”

system to assign overtime. As discussed at length earlier, if more individuals go on leave, the

supervisor will need to select a larger number of volunteers and the pool of people available

to work will shrink. Thus, conditional on volunteering, the probability of working an extra

shift rises. Even if an officer does not volunteer, there is nothing in the memorandum of

understanding preventing supervisors from forcing officers to work if the volunteer pool is

exhausted. In fact, the MOU describes some overtime as “required,” implying that man-

agement can force officers to work in certain situations. The MOU also states that many

rules are suspended during emergencies. Thus, it is reasonable to assume that the city can

force officers to work during incidents such as water main breaks, earthquakes, etc. The

probability of any individual officer working in such circumstances will, once again, depend

on the size of the pool of available workers. As a result, the probability of working for

non-volunteers should also be increasing in the number of other officers on leave.

4.3 Identifying the Average Underlying Injury Rate

As mentioned earlier my empirical strategy is equivalent to a marginal treatment effects

approach. The average underlying injury rate is then the analogue of the average treatment

effect (ATE). Like the ATE, the average injury rate is counterfactual and requires strong

conditions on the instrument to be identified and estimated. Fortunately, because workplace

injury never occurs when someone does not work, I do not need to satisfy all of the typ-

ical marginal treatment effect propensity support conditions. However, identification still

requires that the instrument bring the propensity score arbitrarily close to 1 for those who
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work (Heckman and Vytlacil 1999). If the instrument does not do this, estimating the av-

erage population injury rate will rely entirely on the parametric assumption to extrapolate

beyond the support.9

Figure 4 plots propensity scores for the weekends (Saturday and Sunday) and Monday

through Thursday.10 We see from this diagram that while the propensity score comes close to

1 for Monday through Thursday, it never rises above 0.6 for Saturday and Sunday. Therefore

I do not claim to identify the unconditional average underlying injury rate. I only claim

identification of the injury rate conditional on work being performed on a weekday (Monday

through Thursday). Unless otherwise noted, all estimates and plots in the results section

average only over the weekday observations. As a result they should be interpreted as objects

that are conditional on being a weekday (Monday through Thursday).
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Figure 4: The figures display the support of the propensity score for weekdays (Mon through
Thursday) and weekends (Saturday and Sunday).

Even for weekdays, some readers may still be concerned the support is sparse near 1. To

alleviate this concern, I implement a bounding method proposed by Heckman and Vytlacil

1999 in the robustness section.

5 Results

This section presents the results. I start with the parameter estimates, then the impact of

injury risk on labor supply, followed by the impact of labor supply on injury, and end with

9This is often referred to identification at infinity. I thank an anonymous referee for pointing this out.

10Friday is excluded because it is a hybrid between a weekday and a weekend. It has a higher average
work probability then the weekdays but a lower probability then the other weekdays.
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a decomposition of selection into predictable and private components. All results support

the conclusion that officers use their labor supply decisions to avoid injury. The majority of

this selection comes through private rather then predictable factors. Although the model is

estimated using all days of the week, most of the results are conditional on the date being

a weekday (Monday through Thursday) because of the identification issue discussed earlier.

For more discussion, see Section 4.3.

5.1 Parameter Estimates

Estimates of the most important coefficients in Equations 3 and 1, as well as ρ (the un-

observed correlation between injury propensity and work utility), are presented in Table 4.

Recall that selection effects as well as decompositions hinge crucially on the estimate of ρ.

When ρ is negative there is evidence that officers are utilizing private information about

injury risk to avoid working risky shifts.

Table 4: Workplace Injury and Labor Supply Model: Select Parameter Estimates

Injury Work
Avg. Coworkers on Leave -0.0638∗∗∗ 0.0143∗∗

(0.0120) (0.00611)

Avg. Wage -0.0590 -0.101∗∗∗

(0.0584) (0.0183)

Wage 0.0756 0.107∗∗∗

(0.0610) (0.0157)

Seniority Rank 0.00165 0.000900
(0.00142) (0.000787)

Coworkers on Leave 0.0150∗∗∗

(0.00267)
Observations 80898
Rho -0.658
Rho 95% CI (-0.19, -0.882)

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This table displays the main coefficient estimates of the injury and
work equations. “Avg.” variables are time averages for each person
across time periods.

Due to the non-linear nature of the model, I also report average elasticities of the work

probability with respect to several variables in Appendix Table B.10. I find large wage
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elasticities: a 1 percent increase in the wage increases the probability a worker takes a shift

by 2.27 percent. Leave of coworkers has the expected positive effect. Appendix Table B.11

reports average elasticities of injury conditional on work. That is, how the observed injury

rate responds to changes in the main covariates conditional on the officer having worked. A

one percent increase in the number of coworkers on leave results in a 0.23 percent increase

in the probability of injury given work.

5.2 Impact of Injury Risk on Labor Supply

The most important takeaway from Table 4 is the estimate of ρ. Since ρ̂ = −0.66 and the

estimate is significant, I can reject the null hypothesis that ρ = 0 at the 0.05 level. Recall by

Lemma 1, a negative value for ρ leads to a labor supply (L(v)) which is downward sloping

in private injury risk. Thus, the estimated value for ρ indicates that officers are less likely

to work when they are more likely to be injured. Intuitively, this suggests officers are acting

on private injury risk information in order to avoid injury. Figure 5 plots labor supply

as a function of private injury risk. We can compare different points along the graph to

understand how officers with different private injury risk make labor supply decisions. An

officer at the 80th percentile of unobserved injury risk is 21 percentage points less likely to

work on a particular date than an officer at the 20th percentile.

.4

.6

.8

1

1.2

D
ai

ly
 L

ab
or

 S
up

pl
y

0 .2 .4 .6 .8

Quantiles of Private Injury Risk

Figure 5: Average Daily Labor Supply and Private Injury Risk. This figure plots daily labor
supply (in terms of probability of working) at different levels of private injury risk. Injury risk is in terms of
v a quantile-based measure of private injury risk. Higher v indicates higher private injury risk. Dotted lines
represent 95 percent confidence intervals with a Bonferroni correction for multiple hypothesis testing. The
x-axis is truncated on the right for better visualization.
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5.3 Impact of Labor Supply on Injury Risk

The last section illustrated how injury impacts labor supply. We can also ask how labor

supply impacts injury rates. When more coworkers are on leave, an officer is less able to

self-select out of work. This should increase the probability of injury. This is exactly what

we observe in Figure 6. As the department has to dig deeper into the pool to fill open slots,

it has to rely on officers who are less willing to work and thus more likely to be injured.
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Figure 6: Expected Injury Rate Conditional on Different Instrument Values. Point estimates
are averages of both unobserved heterogeneity and covariates. Dotted lines represent 95 percent confidence
intervals with a Bonferroni correction for multiple hypothesis testing. The x-axis is truncated on the right
for better visualization.

As I show in section 2.2, the effect of voluntary labor supply decisions on workplace

injury within an organization is fully captured by the well-known marginal treatment effect

function. My framework yields an explicit expression for the marginal treatment effect given

by Equation 5. I use this expression averaged over the observed covariates values Xit to

plot the marginal treatment effect in Figure 7. The upward slope of the MTE indicates

that officers which are more resistant to work are more likely to be injured. If we think of

workplace injury as a negative outcome, this represents positive selection. The most risky

officers are the least likely to undergo the treatment which is working a shift.
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Figure 7: Marginal Treatment Effect of Work on Workplace Injury. This figure visualizes
selection against injury: officers who are more resistant to work are more likely to be injured. Dotted lines
represent 95 percent confidence intervals with a Bonferroni correction for multiple hypothesis testing.

To measure the magnitude of selection, we can compare the observed injury rate (injuries

divided by days worked) with the average underlying injury rate. Recall that this is the

expected injury rate of a random officer forced to work on a random date. It is the average

treatment effect of work on workplace injury, and a counterfactual quantity. Comparing

the observed and underlying rates demonstrates that selection effects are large: the average

underlying injury rate is 1.2 percent while the observed injury rate is 0.38 percent. This

means that selection via voluntary labor supply decisions greatly mitigates injury risk among

Los Angeles traffic officers. It also means that an officer who is forced to work will generally

have a much higher injury risk than an officer who volunteers. In the robustness section I

provide a lower bound on the average underlying injury rate which accounts for potential

violations of the propensity score requirements. This lower bound is 0.71 percent.

5.4 Decomposing Selection

Recall that the work decision is based on two pieces: a predictable component, Z ′
itα, and a

private component Ci1 + Uit1. When the sum of the two components is positive, the officer

works. In this section we establish how much of selection comes through each component.

If we assume Z ′
itα,X

′
itβ are jointly normal, the fraction of selection due to the private com-

ponent is given by:

λ :=
ρ2

ρ2 + Corr(Z ′
itα,X

′
itβ)
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I can estimate λ by replacing all the variables on the right hand side with their empirical

counterparts from the estimated model. The only additional step is to compute the correla-

tion between the linear predictions. I find that λ̂ = 0.96, meaning 96 percent of selection is

due to private factors while the remaining 4 percent is due to predictable factors. We can also

follow X. Zhou and Xie 2019 and express the marginal treatment effect as a function of just

the propensity score (another measure of the predictable component) and resistance to work

(another measure of the private component). Because we have an exact expression for the

MTE, I can create a grid of the average MTE for various values and see how much variation

is explained by each component. Using this method, I find 82 percent of variation in the

marginal treatment effect is attributable to private factors while 18 percent is attributable

to predictable factors. Both methods confirm that the majority of selection is due to private

factors: things like private health information and demographics that a manager either could

not predict or could not legally use to assign work. I explore in the discussion section how

this finding implies that carefully designed overtime assignment mechanisms can help reduce

injury rates.

Motivated by a similar diagram in X. Zhou and Xie 2019, I visualize the patterns of

selection across the private and predictable components in Figure 8.
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Figure 8: Decomposition of Selection. This figure plots the marginal treatment effect
for different values of the predictable component (expected labor supply given observables)
and the private component (unobserved resistance or willingness to work).

In the diagram we can think of each point as representing a different type of officer. As

we move along the x-axis from left to right, officers become less willing to work along the

private component. The unobserved parts of their net utility from work become lower. As
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we move from bottom to top along the y-axis, officers become more willing to work along

the predictable component. The shading represents the expected injury rate of each type of

officer. Darker shading indicates a higher injury rate while light shading indicates a lower

injury rate.

Figure 8 paints a fuller picture of the two dimensions of selection. The fact that the

darkest portions of the diagram are in the right bottom corner indicates that private and

predictable selection move in the same direction. Officers who we expect to work (higher

propensity score) generally have a lower marginal treatment effect (average injury rate) for

all values of resistance. Officers who have a higher unobserved resistance tend to have a

lower marginal treatment effect for all values of the propensity score.

Figure 8 can be used to think about the problem of a central planner trying to minimize

the injury rate of an organization subject to some labor supply constraint. Suppose the

planner can choose who to assign a shift, but can only base their decision on observable

factors. Such a planner will only be able to exploit selection along the y-axis (predictable

component). This is quite limiting: the planner could greatly reduce injury rates if it is able

to use the x-axis as well (private factors).

The mechanism design literature tells us that there exist mechanisms, like shift auctions,

which will induce officers to reveal their private willingness to work. Because the private

components are highly correlated, the social planner can design mechanisms which also

extract officer’s private injury risk. Section 7.1 provides a concrete example of these ideas.

6 Robustness

I estimate several variations of the model to test the sensitivity of the main results and

detect any potential threats to identification. A summary of parameter estimates under

each specification is provided in Appendix Table B.9. For each specification, I report the

coefficient on leave of coworkers as well as ρ̂ and the average underlying injury rate.

First, I construct a more conservative version of the leave instrument, which excludes sick

time. I do this out of concern that sick leave violates the exclusion restriction. For example,

diseases may be contagious and thus there could be a direct effect of the sick days taken

by others on own injury risk. Alternatively, increased sick leave might make the remaining

pool of officers on average more healthy. This conservative instrument has considerably less

variation, because sick time represents a fourth to a third of leave.11 For this analysis only

I additionally provide all main coefficient estimates in Appendix Table B.8. All estimates

11See Appendix Table B.5.
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remain relatively stable,

Second, I test the sensitivity of my results to changes in the definition of injury. Because

I measure injuries as workers’ compensation claims, there is a concern that false reporting

of injuries might be biasing my results. Claims are verified by medical professionals, but for

hard-to-verify injuries, like strains and mental stress, over-reporting might still be a concern.

If this is true, the selection I observe could be generated by correlation between an officer’s

propensity to file false claims and their unwillingness to work. To address this, I estimate my

model again with claims described as “Strain” not considered injuries. Out of 243 injuries,

118 are classified as a “Strain.” This removes almost 50 percent of the injuries, so it is not

surprising that my estimates fall in magnitude and statistical significance. However, it is

reassuring that all estimates remain qualitatively similar: ρ̂ remains negative and the average

underlying injury rate remains of a similar magnitude.

Third, I run the analysis reclassifying injuries based on a thresholds for medical expenses.

We can assume that more expensive claims are more serious injuries, and more serious injuries

are less likely to be falsely reported. I re-estimate the model with low value claim–those more

likely to be fraudulent–reclassified as non-injuries. First I estimate the model reclassifying

claims incurring $0, then reclassifying those incurring less than $200, and finally, those less

than $400. Surprisingly, ρ̂ actually rises as I raise the minimum expense threshold. Similarly,

the average underlying injury rate also rises as more claims fall below the minim threshold.

This result suggests that if there is fraudulent reporting of workplace injury, it is likely

causing me to underestimate selection against risk.

Lastly, I address concerns about the support of the propensity score. As mentioned

previously, I only claim to identify the weekday average underlying injury rate. This is

mainly because my instrument does not generate sufficient support of the propensity score

for weekend dates. Still, even among weekdays there are very few observations where an

individual works and the propensity score is above 0.98. This might leave some concerned

that the support condition is still not fully satisfied, and that the resulting estimates rely on

extrapolation and identification at infinity.

To account for this I estimate bounds on the average injury probability. Appealing to

the fact that the average underlying injury rate is the average treatment effect of work on

injury, I use the results derived in Heckman and Vytlacil 1999. Define p̄(x) as the maximum

observed propensity score for covariate pattern x among individual-days with W = 1. Then

we have:

E[Y ∗|X = x] =

∫ p̄(x)

0

E[Y ∗|X = x, U = ũ]dũ+

∫ 1

p̄(x)

E[Y ∗|X = x, U = ũ]dũ
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The first integral is always observed. Because injury is a binary event, the second integral

is bounded between [0, 1 − p̄(x)] which implies that the average underlying injury rate for

covariate pattern x is bounded in the following way:∫ p̄(x)

0

E[Y ∗|X = x, U = ũ]dũ ≤ E[Y ∗|X = x] ≤
∫ p̄(x)

0

E[Y ∗|X = x, U = ũ]dũ+ 1− p̄(x)

Note the interval collapses to a point when the maximum observed propensity score is 1.

Because workplace injury is a rare event, the upper bound is not informative. However

because I am generally concerned about whether the average underlying injury rate is higher

than the observed injury rate, the lower bound is my focus. I set p̄ = 0.98 based on the plots

of the propensity score. I then approximate the first integral using the midpoint method.

The procedure generates a lower bound for the weekday average underlying injury rate of

0.71 percent. This is lower than the main estimate of 1.2 percent I report but still nearly

double the observed weekday injury rate of 0.37 percent. This is evidence that the main

qualitative result does not rest on identification at infinity or functional form extrapolation.

7 Discussion

The traffic officers I analyze are assigned overtime through a relatively simple system: extra

shifts are given to volunteers based on seniority and whether or not the person has already

worked overtime during the relevant period. This system is not designed to reduce injury

rates. It is designed to maximize ex-ante fairness. Strikingly, however, it still generates a

large amount of positive selection which drives the observed injury rate to be much lower

than the underlying injury rate. This is because it gives officers opportunities to self-select

out either by not volunteering or declining a shift.

This result lends some nuance to news stories about overtime among public safety profes-

sionals. Many articles are alarmed by the massive amount of overtime worked by certain fire

fighters and police officers (Ashton and Reese n.d., Steinbach 2019). My analysis suggests

such massive overtime is not necessarily a problem for workplace injury. I analyze 553 officers

over 609 days. The median number of days worked is 379, but the top 10 percent of officers

work more than 447 days. One officer worked 601 of the 609 days. The data cannot speak

to the quality of the work performed by an officer who works almost everyday. However, my

results indicate this overtime inequality reflects a process which is helping to reduce injury.

To see this, notice what I call the average underlying injury rate is also the counterfactual

injury rate we would observe if work assignments were determined mechanically by a random

number generator, and all officer choice was removed. Such a system assures equality in
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overtime outcome: all officers can expect to work the same number of shifts. The observed

injury rate is the rate which arises under the spin the wheel mechanism, which assures equal

overtime opportunity but not equal overtime outcomes. The fact that the observed rate is

so much lower than the underlying rate implies that achieving overtime equality will come

at the cost of more injuries.

Thus, inequality in the distribution of overtime ex-post is not necessarily bad in terms of

injury rates, as long as the inequality is generated by a voluntary process. Indeed, my results

highlight that the distinction between mandatory and voluntary work is of first-order concern

when it comes to injury. Many descriptive analyses have shown a positive relationship

between excessive work and workplace injury. These include studies using the NLSY (Dembe

et al. 2005), a survey of fire fighters in Korea (Kim et al. 2016) and an analysis using the

PSID (Conway et al. 2017). Importantly, these studies do not distinguish between mandatory

and voluntary overtime. Under my framework, we can think of mandatory overtime as shifts

worked when willingness to work is low. I have shown both private and predictable willingness

to work is negatively correlated with injury risk. This implies mandatory overtime is more

dangerous than voluntary overtime. Because of this, analyses which lump mandatory and

voluntary overtime together will always be estimating a weighted average of the mandatory

and voluntary effect. Additionally, two identical companies employing identical populations

of employees could still have completely different observed injury rates if they allocate work

differently. Organizations which rely on voluntary mechanisms will tend to have lower injury

rates, while organizations which force employees will tend to have higher rates.

Because I have variation in wages, I am able to estimate the value of a statistical injury

for different traffic officers. Because this is not the main focus of the paper, the calculations

and estimates are provided in Appendix Section A.8. One observation worth noting is that

even within a single occupation and a single organization, the value of a statistical injury

can be heterogeneous. This is illustrated in Appendix Figure 12.

7.1 Shift Auctions

The decomposition of selection into a private and predictable component revealed that the

majority of selection is private. I have shown in this paper that the current mechanism used

to assign traffic officers to shifts leverages some of this private selection. In this section, I

demonstrate both theoretically and via simulation that organizations can reduce the injury

rate further by using a better mechanism, specifically an auction.

First, recall a few results from auction theory. In a second-price auction with private

values, it is weakly dominant to bid one’s true value. As a result, the auction will generally
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assign the object to whoever values it most. When officers are the bidders and shifts are the

objects, net utility from work is the value. Suppose officers bid by posting a wage, and the

winning officer is the one who posts the lowest wage. Suppose it is a second-price auction,

so the winning officer works the shift at the second-lowest wage bid. From auction theory

we know that in equilibrium, the winning officer will be the one with the highest net utility.

We can use the earlier estimated results to analyze the efficacy of such a mechanism. I

have shown net utility is negatively correlated with injury risk (through both the private

and predictable component). The coefficient on wages in the work decision is also positive,

indicating officers value wages. This means officers will trade-off wages and injury risk, and

the winning officer will have one of the lowest expected injury risks. In theory this should

increase selection against injury, because we no longer assign shifts sequentially but rather

let officers compete for the shift. Intuitively, shift auctions induce officers to truthfully reveal

their injury risk.12 In this way a shift auction should theoretically improve upon the status

quo. Revisiting Figure 8, a shift auction would free a manager to use variation along both

dimensions to minimize injury rates.

I now show via simulation that auctions reduce injury rates. I compare a shift auction

like the one described previously to a random list mechanism. I employ a simple random

list mechanism similar in spirit to the status quo spin the wheel system. A full description

of the simulation of the list and shift auction mechanisms is given in Appendix Section A.7.

I perform 1,000 simulations. On average, the shift auction mechanism generates an average

daily injury rate of 0.49 percent, while the random list mechanism generates an average daily

injury rate of 0.55 percent. This means the shift auction results in a 12 percent decrease in

the injury rate.

I also compare shift auctions to what I call the full information benchmark. The full

information benchmark is the injury rate that would be observed if a manager could assign

additional shifts directly to the employees with the lowest injury risk. To simulate it, I

randomly assign regular shifts among officers who are willing to work, and then I assign the

additional shifts to the officers with the lowest injury risk. The full information benchmark

results in an average daily injury rate of 0.40 percent.

The simulation results are summarized in Figure 9. The figure displays the simulated

injury rate under all three regimes plotted for 1,000 simulations (assuming the number of

shifts worked is constant). The injury rate distribution when officers bid for shifts approaches

the full information benchmark, and yields much lower injury rates than the random list.

This exercise highlights the practical implication of my results: because so much of selection

12This intuition comes via the revelation principle.
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is driven by private, unobserved factors, carefully designed mechanisms which induce officers

to act on their private information can reduce an organization’s injury rate. The shift auction

is one such mechanism: because officers value wages but dislike injury, the winning bidder

will have low injury risk.
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Figure 9: Simulated Injury Rates Under Three Mechanisms. The figure plots the
simulated distribution of the injury rate under three different overtime assignment mecha-
nisms. The full information mechanism is the ideal case, when a planner assigns shifts to
the officers with the lowest risk. The random list mechanism is similar to the mechanism
currently used by the City of Los Angeles, where shifts are given randomly to everyone who
volunteers. The shift auction assigns extra shifts to the officers who bid the lowest wage.

In the simulated shift auction, a manager posts the available shifts, and officers may

place a wage bid for each. The shift is then assigned to the officer who bids the lowest wage.

Although shift auctions may seem unorthodox, many scheduling software companies already
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include such a system as a built-in option.13

7.2 Labor Supply Elasticity

So far I have established that, all else being equal, officers will work less when they have

elevated injury risk. That is, the labor supply curve slopes downward in injury risk. In this

section, I quantify how injury risk impacts labor supply elasticities with respect to the wage.

My model allows me to estimate the elasticity of the probability of working a shift with

respect to the wage conditional on different unobserved propensities to be injured. This

allows me to see how elasticities vary at different levels of risk. Formally, I calculate the

quantity:

ewage(Zit, v) =
wageit

Pr(Wit|Zit, v2it = v)

∂

∂wageit
Pr(Wit|Zit, v2it = v)

and average over observed Zit. This yields an average labor supply elasticity for each value

of v. I plot this relationship in Figure 10 and see that the elasticity is increasing in private

injury risk.
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Figure 10: Average Labor Supply Elasticity by Injury Risk Propensities. The figure displays
the average work probability (labor supply) elasticity conditional on different values of unobserved injury
propensity. The dotted lines represent a 95 confidence interval with a Bonferroni correction for multiple
hypothesis testing.

Appendix Table B.15 contains the point estimates from Figure 10. Individuals with a

private injury risk at the 30th percentile have an expected elasticity of 0.642, while those

13Some examples: Stay Staffed, which produces a nurse scheduling software; Celayix Software, a multi-
industry workforce management software company; EPay Software, a human capital management provider.
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with an injury propensity around the 60th percentile will have an elasticity of around 1.32.

As injury risk rises, labor supply becomes more sensitive to wage changes. This illustrates

that heterogeneity in injury risk can be an important confounder when estimating intensive

margin labor supply elasticities.

8 Conclusion

This paper provides evidence traffic officers consider their individual injury risk when de-

ciding whether to work. I identify and estimate a labor supply model utilizing the unique

structure of overtime assignment employed by the Los Angeles Department of Transporta-

tion. I establish that daily labor supply is downward sloping in unobserved injury risk,

implying officers work less when they are more likely to be injured. This behavior implies

the population of officers working on any given day is positively selected (less injury prone)

compared to the underlying workforce. I then show this plays a significant role in mitigating

observed injury rates.

I also illustrate the practical implications of the main result. I propose shift auctions

with workers bidding the wage at which they are willing to work as a mechanism which

can leverage self-selection to reduce injury even more than traditional overtime assignment

schemes. I show by simulation that a shift auction reduces the observed injury rate compared

to a typical assignment mechanism.

To my knowledge, this paper is the first to explore how workers within a single organiza-

tion working the same job incorporate private injury risk into high-frequency labor supply

decisions. The fact that idiosyncratic injury risk plays such a large role in labor supply

decisions raises a number of questions across both economics and public health. Across

both disciplines, it suggests current estimates of injury rates are biased downwards. This

is because the estimates use observational data, and the observed injury rate will tend to

overweight low-risk workers who choose to take on additional shifts. Within economics, it

implies injury risk within some jobs is a choice variable, which workers can control through

their labor supply. Within public health, the fact that some public safety professionals work

massive amounts of overtime may not be bad for injury rates. If it is the result of voluntary

labor supply decisions, ex-post inequality in days worked can be evidence of self-selection

acting to mitigate injury.

It has long been established that workers sort across occupations based on injury risk

concerns. Future work should explore how such extensive margin sorting interacts with the

intensive margin sorting within an organization established here. It is not clear how such

sorting shapes and is shaped by labor market equilibrium.
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A Appendix

A.1 Labor supply as a function of unobserved injury propensity

The following lemma establishes that whether L(v) is increasing or decreasing depends only

on ρ.

Lemma 2 L(v) is strictly decreasing if and only if ρ < 0.

Proof. Note that:

∂

∂v
Φ

(
ζ1 + Z ′

i,tα + Z̄ ′
iγ1 + ρΦ−1(v)

(1− ρ2)1/2

)
< 0 ∀v

for any value of ζ1+Z ′
i,tα+ Z̄ ′

iγ1 if and only if ρ < 0. Then the expectation is just an integral

over values of ζ1 + Z ′
i,tα + Z̄ ′

iγ1, and I can invoke dominated convergence to say that:

∂L(v)

∂v
= EZi,t,Z̄i

[
∂

∂v
Φ

(
ζ1 + Z ′

i,tα + Z̄ ′
iγ1 + ρΦ−1(v)

(1− ρ2)1/2

)]
< 0 ∀v Q.E.D.

A.2 Additional Traffic Officer Details from the Memorandum of

Understanding

The Memorandum also outlines payment guidelines surrounding minimum payments and

“early report” pay. The city is required to pay a minimum of my hours of premium pay

if an employee is required to return to work “following the termination of their shift and

their departure from the work location” (MOU, 30). If an officer is required to come into

36



work earlier than their regularly scheduled time, they must be paid one and a half times

their hourly rate for the amount of time worked prior to the regularly scheduled time (MOU,

32). Workers compensation rules are briefly described. For any injuries on duty, salary

continuation payments “shall be in an amount equal to the employee’s biweekly, take-home

pay at the time of incurring the disability condition” (MOU, 59).

In regards to the assignment of overtime, the Memorandum has this to say: “Management

will attempt to assign overtime work as equitably as possible among all qualified employ-

ees in the same classification, in the same organizational unit and work location” (MOU,

27). Employees must also be notified 48 hours in advance for non-emergency overtime and

unofficial overtime that is not sanctioned by a supervisor is “absolutely prohibited” (MOU,

28). Workers cannot add additional hours to their shift unless authorized. For this reason

my paper focuses on the decision to work additional shifts rather than the decision to work

additional hours.

A.3 The Partial Likelihoods

Pr(yit = 1|wit = 1, Zi) =
1

Φ(Z ′
itα + ζ1 + Z̄ ′

iγ1)

∫ Z′
itα+ζ1+Z̄′

iγ1

−∞
Φ

(
ζ2 +X ′

itβ + Z̄ ′
iγ2 + ρv

(1− ρ2)−1/2

)
ϕ(v)dv

Pr(yit = 0|wit = 1, Zi) =
1

Φ(Z ′
itα + ζ1 + Z̄ ′

iγ1)

∫ Z′
itα+ζ1+Z̄′

iγ1

−∞

[
1−Φ

(
ζ2 +X ′

itβ + Z̄ ′
iγ2 + ρv

(1− ρ2)1/2

)]
ϕ(v)dv

Pr(wit = 1|Zi) = Φ(Z ′
itα + ζ1 + Z̄ ′

iγ1)

Pr(wit = 0|Zi) = 1− Φ(Z ′
itα + ζ1 + Z̄ ′

iγ1)

A.4 Data Cleaning and Population Definition

The worker’s compensation and payroll data was provided by the City of Los Angeles. The

data was de-identified, and spans from 2014 to 2016. It was first provided to a city employee,

who performed the de-identification and merged together the two sources. Originally, only

the worker’s compensation files contained information on employee age and hire date. To the

extent an employee was never injured, there would be no age information. A third file was

acquired and merged on to fill in gaps of information for employees that were not injured.

The workers’ compensation data includes the date of the injury,14 the date on which

the employee gained knowledge of the injury, the nature of the injury, and the cause of the

injury. After removing duplicate records, there are 351 distinct worker compensation claims

14It also includes time of injury, but this field says 12:00 AM the majority of the time, suggesting it is
not reliable.
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across 246 traffic officers in the time period. Of these, 295 have a non-zero value for “Med

Pd” suggesting some sort of expense was paid out to the employee. Figure 11 displays the

distribution of claims across the period. The claim counts appear abnormally low prior to

January 2015 and after September 2016.

Figure 11: Workers’ Compensation Claims by Month
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Note: The figure plots the number of workers’ compensation by month. Unlike subsequent
months, there are almost no claims prior to January 2015. To avoid confounding the results
with observations from a different data generating or reporting system, I limit the analysis
window to January 1, 2015 to September 1, 2016.

The pay data includes records for each type of pay received on each day. It also includes

the number of hours, amount of pay, rate of pay, division worked, and Variation Description.

Variation Description is a pay code which describes the reason for a payment. I use Variation

Description to classify records as work-related, leave-related, or neither. Table B.12 displays

the classification process.

I aggregate the pay and workers’ compensation records into an officer-day panel data

set with measures of daily hours worked and hours taken as leave. This process is non-

trivial, and requires some assumptions which are outlined in the data-building section of the

Appendix. I then perform several important exclusions to create the working sample. First,
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I limit the study period to workdays and injuries between January 1, 2015 for the reason

described above. Second, I exclude all part-time employees (defined as officers having more

than three four week periods with less than 60 hours of leave and work) due to their highly

irregular schedules.

I include only officer-days where the officer works or does not work, and exclude days

where they are on leave. I exclude non-work officer-days that occur after an injury but

before the first day worked after injury. I also exclude the first day worked after injury. The

decision to return to work after an injury follows a different process than the normal decision

to work a shift. The days off work may be medically required. The first day returned also

is part of the workers’ compensation process and not subject to the normal labor supply

decision. Omitting these days allows me to focus on the decision to work a shift, rather than

the decision to use a sick or vacation day. Finally, ten injuries occurred on dates without

positive work hours. Four of these injuries are associated with the day prior (it appears

that the work may have crossed over midnight). Six injuries are assumed to have happened

immediately, and the date is considered worked.

A.5 Justifying Identification

If one is willing to ignore Equation 1 and instead assume a linear probability model for

the injury outcome, my model would be a special case of the switching model described in

Chen, Y. Zhou, and Ji 2018. Then I could achieve non-parametric identification with a single

exclusion restriction and a symmetry condition on the unobservables. But I am not willing to

make this simplification, because unlike in other applications, injury for a particular officer

on a particular day is quite unlikely, so that Pr(yit) ≈ 0. Because there are continuous

covariates in Xit, X
′
itβ is unlikely to be bounded between [0, 1] almost surely. According to

Horrace and Oaxaca 2006, this makes the linear probability model implausible.

A.6 Statistical Tests of the Instrument Validity

Several authors have proposed tests of instrument validity in traditional sample selection

models where the outcome is continuous and the data is cross-sectional. However, at the time

of writing, I could not find any tests for instrument validity when the outcome is binary (i.e.

when the link function is not the identity function). As a result, I implement an instrument

validity test that is meant for continuous outcomes. First, I implement a modified version of

the test designed in Semykina 2012. The procedure uses a flexible control function method to

correct for selection. In my implementation, I use the semi-parametric estimator proposed in

Gallant and Nychka 1987 with a fourth-degree polynomial for the selection equation and then

39



insert the selection correction into the outcome equation using a linear spline with 5 knots. I

then test whether the instruments from the selection equation, in my case seniority rank and

leave of others in division satisfy over-identifying moment restrictions. The null hypothesis

is the variables do satisfy the restrictions, and thus are uncorrelated with the injury outcome

errors. Failing to reject the null hypothesis provides evidence that the variables satisfy the

exclusion restriction. The test returns a J-statistic of 1.40 and a p-value of 0.496. Therefore

I fail to reject the null hypothesis at the 0.05 level.15

Another test of instrument independence examines the balance of other officer-day char-

acteristics across values of the instruments. One such variable is medical expenses paid,

which is included in the workers’ compensation data for each documented injury. Medical

expenses are a proxy for the seriousness of injury. For example, injuries with Claim Cause

“Repetitive Motion - Other” had an average expense of $2,726, while those with “Collision

or Sideswipe” had an average expense of $3,385. In theory, leave of others and cumulative

potential contacts should only impact injury by inducing more people to go into work. Both

instruments should not impact the severity of the injury. If they do, then there is reason

to suspect that the exclusion restriction does not hold. In Table B.14, I regress medical

expenses paid on the leave instrument with different sets of controls.

For linear models, there are many formal under-identification, over-identification, and

weak instrument tests. Unfortunately, my model is nonlinear. In Appendix Table B.13, I

report results from what I call a “proxy” model. It is a fixed effects 2SLS specification (the

model I would fit if yit were continuous). Across all specifications, using the Kleinbergen-Paap

rK LM test, I reject the null hypothesis of under-identification. Using the Kleinberg-Paap

rk Wald F test, I reject the null hypothesis that the instruments are weak. Overall I find no

evidence the identifying assumptions are violated in the proxy model.

I can use the proxy model to see how instrument strength impacts the coefficients. Using

the tables presented in Stock and Yogo 2002, for my preferred specification (the third model

in Table B.13) the maximum relative bias of the IV estimator is less than 10% (relative to

OLS). The Cragg-Donald F-Statistic of my preferred specification is 230. According to D. L.

Lee et al. 2020, this means I can safely use the 1.96 critical-value for testing hypotheses while

maintaining a Type 1 error of 5 percent. This means I have sufficient instrument strength

to reject the null hypothesis of random selection into work at the 0.05 level.

15The current test ignores the uncertainty and variance coming from the first-stage estimation of the
selection correction because the computational burden of the flexible first-stage is large.
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A.7 Description of Shift Auction Simulation

I first describe the equilibria of the random list and shift auction mechanisms. For shift

auctions, I restrict attention to k+1-price auctions, where the k overtime shifts in a division

are assigned to the lowest k bidders and they are paid the bid of the k + 1 lowest bidder.

Assuming independent values, the unique Bayesian Nash Equilibrium is clearly for each

officer to bid their value. The winner in equilibrium will be the officers with the k lowest

values. Further, since injury risk is negatively correlated with value, the k winners will have

the lowest injury risks among all bidders. In the list mechanism, officers will accept the shift

if they are offered it and their value exceeds their outside option. If their value does not

exceed their outside option, the shift passes to the next person. Whenever there are more

officers willing to work at their normal wage then there are shifts to fill, the officers selected

from an auction will have a lower expected injury rate than from the random list. If there

are more shifts than officers, and it is assumed that in both mechanisms the shortage is filled

by forcing employees to work, then the mechanisms deliver ex-ante the same injury rates.

As a result, injury rates will be weakly lower with shift auctions.

To formalize this, consider a fixed day t (from here on I suppress the t subscript). Denote

the monetary value of a shift to officer i as θi. I can derive the monetary value by setting

utility equal to 0 and solving for the wage variable. This yields: θi := (z′iα + ζ1 + Z̄ ′
iγ1 −

vi1)/αwage where zi does not include the wage variable and αwage is the coefficient on the

wage variable. The utility from working at bid wage bi is given by Ui = θi + bi. Recall that

the injury outcome is denoted yi. θi and yi are correlated both through the shared elements

of Zi that enter both the work and injury outcomes and through unobserved correlation.

There are a number of complexities related to how overtime shifts can be assigned. I

abstract from these complexities, and consider a simple situation where each division on

each date requires sd,t officers, where sd,t is determined as the number of people observed

working. Denote total shifts in the the entire analysis period in division d as Sd. I assume

that some number of the positions, denoted rd,t are filled by regular officers. The remainder,

denoted kd,t, are filled with additional officers. Because I do not observe how many shifts

are regularly scheduled, I assume that, within each division, it can be approximated as the

number of hours coded as “CURRENT ACTUAL HOURS WORKED ONLY” divided by

8.16 Call this numbers Rd. I also assume the fraction of shifts which are regular is time

invariant. This allows us to approximate rd,t as Rd/Sd × sd,t rounded to the nearest whole

number. kd,t is then sd,t − rd,t. With these in hand, the simulation procedure I use to obtain

injury rates under the random list and shift auctions is as follows:

16This code appears to correspond to regular hours, or non-overtime, hours.
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1. For all officer-days, randomly draw i.i.d. pairs of (vit1, vit2). Then, within each division-

date, do steps 2-4.

2. To simulate the list mechanism, randomly select sd,t officers from among those with

z′iα+ ζ1+ Z̄ ′
iγ1−vi1 > 0 with wage included in zit. If there are not enough officers that

satisfy the criteria, fill the remaining slot with randomly chosen officers. Calculate the

list-mechanism injuries using the vit2 draws of the selected officers.

3. To simulate a shift auction, order the officers according to z′iα+ ζ1+ Z̄ ′
iγ1− vi1. Assign

the rd,t shifts to the “winners”, the lowest rd,t officers. Calculate the shift auction

injuries using the vit2 draws of the auction winners.

4. Compute the injury rate change as the difference in the number of injuries under the

two systems divided by the total number of officer-work days.

A.8 The Value of a Statistical Injury

I use an approach similar to that observed in the literature (Kniesner and Viscusi 2019) and

define the value of a statistical injury (VSI) as the amount of money an officer would be

willing to pay to decrease the probability of injury on a work day by 1/n multiplied by n.

I set n to be 259,861. This is the number of officer-days in my analysis population. Thus

the VSI I present has the usual interpretation: it is the amount of money a large number of

officers are willing to collectively pay to avoid one additional injury in the 609-day period.

In my setting, variation in wages allows us to back out the value of a statistical injury

using a willingness to pay approach. Since unobserved injury risk is negatively correlated

with utility and the coefficient on wages in utility is positive, the typical officer will require

a positive payment to take on injury risk. The methodology I use to calculate the value of

statistical injury is listed in Appendix Section A.9. I estimate that on average, the implied

value of a statistical injury for Los Angeles traffic officers is between $125,445 and $250,891.17

17Dollars are as of 2015 and unadjusted for inflation.
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Table A.1: Value of a Statistical Injury

Lower Bound (M = 1)
Willingness to Pay VSI

1.151 67195.5
(1.971) (115136.0)

Standard errors in parentheses

Upper Bound (M = 2)
Willingness to Pay VSI

2.301 134391.0
(3.943) (230272.0)

Note: This table displays the willingness to
pay for an injury risk reduction, which is the
average amount an officer who is indifferent be-
tween working and not would pay to reduce in-
jury risk by 1/259, 861. The value of a statisti-
cal injury (VSI) is the willingness to pay multi-
plied by 259, 861.

These aggregate figures mask significant individual and temporal heterogeneity. Figure

12 displays a density plot of willingness to pay estimates across officer-days. The distribution

is bimodal, with a peak near $0.1 and another near $0.5. This is a cautionary tale: even

though the analysis is restricted to a single occupation in a specific city, willingness to pay

for injury risk reduction varies greatly from person to person. My results also suggest that

as working arrangements become more flexible and under the worker’s control (through

gig-economy growth and the transition to contractor employment), workplace injury should

fall.
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Figure 12: Distribution of Willingness to Pay Across Officer-Days
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Note: The figure plots the distribution of willingness to pay for a 1/259, 861 reduction in
risk. The unit of observation is officer-day. The Epanechnikov kernel is used to estimate the
density. Values above $2 (less than 3% of the data) are removed for better visualization.

Viscusi and Aldy 2003, which surveyed VSI estimates as of 2003, report developed country

VSI estimates ranging from $8,148 to $242,671 (using year 2000 US dollars). Most of the

estimates they report are between $20,000 and $50,000. My estimates adjusted to 2000

dollars18 yield an estimated VSI range of $90,606 to $181,212. It is hard to compare VSI

estimates, because they depend heavily on the severity of injuries faced as well as the risk

tolerance of the population analyzed. Individuals sort into occupations partly based on

risk tolerance. Therefore, because I analyze a specific occupation, my estimates are not

representative of the average working population’s value of a statistical injury.

There are several potential reasons why my estimates are higher than past estimates.

First, the VSI estimates in the Viscusi and Aldy 2003 survey use the coefficients from he-

donic wage regressions. This approach implicitly assumes that risk within occupations is

exogenous. In the case of traffic officers at least, individuals can control their own risk

through daily labor supply decisions. The fact that our VSI estimates are high relative to

others suggests this endogeneity causes a downward bias. Second, a good portion of the in-

juries I analyze are severe and related to vehicle accidents. Such injuries have the potential

to be fatal, and are much more likely to have long term consequences for quality of life.

18using the U.S. Bureau of Labor Statistics’ CPI Inflation Calculator.
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A.9 Description of Value of Statistical Injury Calculations

For the purposes of these calculations, I assume that all officers are indifferent between

working and not working prior to the probability change. Mathematically, this means that

ζ2+x′β+Z̄ ′
iγ2 = vit1. Such officers are willing to accept an increase of αwq in vit1 in exchange

for a $q increase in the wage. This increase in vit1 translates into injury probability because

it is correlated with vit2. Thus an increase in vit1 (unobserved willingness to work) shifts the

conditional distribution of vit2 (unobserved injury resistance). Specifically, it decreases the

mean of injury resistance by ραwq. The proportional change in the probability of injury for

an officer with covariates xit and initial value of unobserved work utility vit1 is:

∆(xit, q, v) := Φ

(
ζ2 + x′β + Z̄ ′

iγ2 − ρv + q(βw − ραw)

(1− ρ2)1/2

)
− Φ

(
ζ2 + x′β + Z̄ ′

iγ2 − ρv

(1− ρ2)1/2

)
The willingness to pay for a 1/n increase in injury probability for an officer with covariates

xit and unobserved resistance to work v is then given by q(xit, v) which solves:

∆(xit, q(xit, v), v) =
1

n

This is uniquely defined because the CDF is strictly increasing. Solving for q (willingness to

pay) yields:

q(xit, v) = − 1

βw − ραw

(
(ζ2+x′

itβ+Z̄ ′
iγ2−ρv)−(1−ρ2)1/2Φ−1

{
Φ

(
ζ2 + x′

itβ + Z̄ ′
iγ2 − ρv

(1− ρ2)1/2

)
+
1

n

})
To calculate VSI, I assume that officers expect to work 8 hours ex-ante. Finally, the value

of a statistical injury is given by:

V SI = M · n · 8 · Ex,v[q(x, v)]

where note that I have integrated out v, the unobserved utility from work.19 M represents

a multiplier on the wage. For some shifts, officers will expect to be paid their typical wage

rate, so M = 1. For others, officers may expect to be paid an overtime or special events

premium, so M = 1.5 or M = 2. Because the coefficient on wage is positive, I can bound

the VSI from above by setting M = 2 and below by setting M = 1. The upper and lower

bounds of the average VSI (and the associated willingness to pay) for Los Angeles traffic

officers are presented in Table A.1.

19For my estimates, I integrate out v using Gauss-Hermite quadrature with 5 nodes.
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B Additional Tables

Table B.1: Number of Unique Injuries

Officer Count Percent
0 366 66.18
1 134 24.23
2 39 7.05
3 12 2.17
4 1 0.18
5 1 0.18
Total 553 100.00

Note: Distribution of injuries across
officers. Most officers experience no in-
juries or only one injury.

46



Table B.2: Types of Injuries

Count Percent
Strain or Injury By, NOC 53 20.95
Collision or Sideswipe w 40 15.81
Repetitive Motion - Other 24 9.49
Fall, Slip, Trip, NOC 18 7.11
Motor Vehicle, NOC 16 6.32
Other-Miscellaneous, NOC 12 4.74
Animal or Insect 10 3.95
Object Being Lifted or 8 3.16
Other Than Physical Cause 8 3.16
Fellow Worker, Patient, or 7 2.77
Person in Act of a Crime 7 2.77
Cumulative, NOC 5 1.98
Dust, Gases, Fumes or 5 1.98
Exposure, Absorption, 4 1.58
Twisting 4 1.58
Foreign Matter in Eye(s) 3 1.19
Struck or Injured, NOC 3 1.19
Using Tool or Machinery 3 1.19
Bicycling 2 0.79
Broken Glass 2 0.79
Lifting 2 0.79
Pushing or Pulling 2 0.79
Repetitive Motion 2 0.79
Temperature Extremes 2 0.79
Other (Catch-all) 11 4.40
Total 253 100.00

(a) Injuries by “Claim Cause”

Count Percent
Strain 119 47.04
Contusion 32 12.65
Sprain 30 11.86
Mental Stress 14 5.53
No Physical Injury 11 4.35
Inflammation 7 2.77
All Other Specific Inj. 5 1.98
Bee Sting 4 1.58
Dermatitis 4 1.58
Foreign Body 4 1.58
Heat Prostration 4 1.58
Multiple Physical Inj. 4 1.58
Carpal Tunnel 3 1.19
All Other Cumulative 2 0.79
Infection 2 0.79
Respiratory Disorders 2 0.79
Asbestosis 1 0.40
Bloodborne Pathogens 1 0.40
Hypertension 1 0.40
Laceration 1 0.40
Mult Injuries 1 0.40
Stroke 1 0.40
Total 253 100.00

(b) Injuries by “Nature of Injury”

Table B.3: The table displays the distribution of injuries across two injury classification
variables.
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Table B.4: Days Worked by Day of the Week

Count Percent Cum. Pct.
Tuesday 32364 17.62 17.62
Wednesday 31548 17.18 34.80
Thursday 31329 17.06 51.86
Monday 30933 16.84 68.70
Friday 29757 16.20 84.90
Saturday 16478 8.97 93.87
Sunday 11250 6.13 100.00
Total 183659 100.00

Note: This table describes the distribution of officer-
days by day of the week.
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Table B.5: Number of Officers on Leave By Division

mean sd p10 p50 p90
811
Officers with Positive Leave 4.54 3.67 1.00 4.00 8.00
Officers with Positive Sick 1.57 1.45 0.00 1.00 4.00
Total Leave Hours 52.35 34.17 2.00 52.00 94.00
812
Officers with Positive Leave 11.25 7.55 1.00 12.00 20.00
Officers with Positive Sick 3.54 2.79 0.00 3.00 7.00
Total Leave Hours 112.26 76.29 6.00 123.00 203.00
814
Officers with Positive Leave 16.76 10.15 1.00 21.00 28.00
Officers with Positive Sick 5.59 3.61 0.00 6.00 10.00
Total Leave Hours 169.11 101.10 16.00 203.50 281.00
816
Officers with Positive Leave 9.37 5.93 0.00 11.00 16.00
Officers with Positive Sick 2.40 2.04 0.00 2.00 5.00
Total Leave Hours 90.70 58.55 0.00 104.00 155.00
818
Officers with Positive Leave 4.75 3.35 0.00 5.00 9.00
Officers with Positive Sick 1.49 1.39 0.00 1.00 3.00
Total Leave Hours 47.69 33.65 0.00 49.00 88.00
819
Officers with Positive Leave 17.01 10.49 1.00 21.00 28.00
Officers with Positive Sick 5.79 3.79 1.00 6.00 10.00
Total Leave Hours 173.82 106.87 16.00 206.00 293.00
800 - 810, 824, 828,
Officers with Positive Leave 1.48 1.42 0.00 1.00 3.00
Officers with Positive Sick 0.63 0.81 0.00 0.00 2.00
Total Leave Hours 16.14 15.82 0.00 16.00 40.00
Other
Officers with Positive Leave 2.42 1.77 0.00 2.00 5.00
Officers with Positive Sick 0.68 0.84 0.00 0.00 2.00
Total Leave Hours 24.28 18.55 0.00 24.00 48.00
Total
Officers with Positive Leave 8.45 8.66 0.00 5.00 23.00
Officers with Positive Sick 2.71 3.05 0.00 2.00 7.00
Total Leave Hours 85.79 86.87 0.00 52.00 227.00
Observations 4864

Note: This table describes the distribution of the number of officers on leave by
division. It gives a sense of how leave varies spatially (differences in the distribution
across divisions) and temporally (variation within division across time). The category
“Other” contains several small division codes.

49



Table B.6: Regressions of Injury on Work

(1) (2) (3) (4)
Work 0.00140∗∗∗ 0.00141∗∗∗ 0.00113∗∗∗ 0.00116∗∗∗

(0.000100) (0.000103) (0.000106) (0.000109)

Age 0.0000108 0.0000116 0.0000119 0.0000117
(0.00000769) (0.00000982) (0.00000981) (0.00000987)

Observations 259861 259861 259861 259861
F-Stat. 97.78 9.668 5.509 .
Division FE No Yes Yes Yes
Day of Week/Month FE No No Yes No
Date FE No No No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents results of ordinary least squares regressions of injury on work. The coefficient
on work provides a naive estimate of the observed injury rate. Standard errors are clustered at the
officer level.

Table B.7: Linear Probability Models of Work Decision

(1) (2) (3) (4) (5)
Coworkers on Leave 0.0191∗∗∗ 0.0192∗∗∗ 0.0218∗∗∗ 0.00148∗∗∗ 0.00380∗∗∗

(0.000474) (0.000437) (0.000461) (0.000523) (0.000669)

Age 0.000322 0.000312 0.000385 0.000366
(0.000424) (0.000290) (0.000285) (0.000283)

Wage 0.0577∗∗∗ 0.0448∗∗∗ 0.0281∗∗∗ 0.0267∗∗∗

(0.00487) (0.00464) (0.00357) (0.00363)

Seniority Rank -0.0000898 0.000160 0.000223 0.000221
(0.000187) (0.000164) (0.000164) (0.000163)

Observations 80898 80898 80898 80898 80898
First-Stage F. 583.7 390.8 114.0 112.1 99.45
Division FE No No Yes Yes Yes
Month/Day of Week FE No No No Yes No
Date FE No No No No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents estimates of a linear probability model of the work decision. Time averages
of age, leave of coworkers, seniority rank and wage are included in all specifications. The table suggests
that the instruments are relevant to the work decision. The sample is limited to dates where an injury is
observed. Standard errors are clustered at the officer level.
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Table B.8: Model Parameters with Sick Time Excluded

Injury Work
Avg. Leave of Coworkers -0.0360∗∗∗ 0.00520

(0.00972) (0.00493)

Avg. Wage -0.0694 -0.104∗∗∗

(0.0627) (0.0182)

Age 0.00308 0.00173
(0.00285) (0.00137)

Wage 0.0870 0.111∗∗∗

(0.0652) (0.0155)

Seniority Rank 0.00138 0.000949
(0.00143) (0.000794)

Leave of Coworkers 0.0150∗∗∗

(0.00264)
Observations 80898
Rho -0.653
Rho 95% CI (-0.18, -0.880)

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Parameter estimates when sick time is excluded from the
leave instrument. ρ̂ remains negative and significantly
different from 0.
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Table B.10: Average Labor Supply Elasticities

Effect Analytical Representation Model Estimate

Leave of Coworkers Ezit [
leaveit

Pr(wit=1|zit)
∂Pr(wit=1|zit)

∂leaveit
] .0327

(.00583)

Wage Ezit [
wageit

Pr(wit=1|zit)
∂Pr(wit=1|zit)

∂wageit
] .6253

(.09263)

Seniority Ezit [
seniorit

Pr(wit=1|zit)
∂Pr(wit=1|zit)

∂seniorit
] .0049

(.00425)

This table reports averages elasticities of the work outcome. Estimates are av-
erages over all covariates and officer-days, with standard errors accounting for
sampling of covariates. The values can be interpreted as a 1% increase in the vari-
able changes the probability of working by x%.

Table B.11: Average Elasticities: Injury Conditional on Working

Effect Analytical Representation Model Estimate

Wage Ezit [
wageit

Pr(yit=1|wit=1,zit)
∂Pr(yit=1|wit=1,zit)

∂wageit
] 12.37

(5.3440)

Leave of Coworkers Ezit [
leaveit

Pr(yit=1|wit=1,zit)
∂Pr(yit=1|wit=1,zit)

∂leaveit
] .2347

(.12577)

Seniority Ezit [
seniorit

Pr(yit=1|wit=1,zit)
∂Pr(yit=1|wit=1,zit)

∂seniorit
] .2165

(.13800)

This table reports averages elasticities of the injury outcome conditional on
working. The elasticities are averages over all covariates and officer-days, with
standard errors accounting for sampling of covariates. The values can be inter-
preted as a 1% increase in the variable changes the conditional probability of
injury by x%.
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Table B.13: Fixed Effects IV: Testing Instrument Validity

(1) (2) (3) (4)
Work 0.00263∗∗∗ 0.00233∗∗∗ 0.00740∗ 0.00265

(0.000336) (0.000299) (0.00379) (0.00224)
N 259861 259861 259861 259861
Underid K-P LM-stat 336.7 342.5 28.20 57.41
C-G F-Stat 60651.3 67321.7 497.8 1377.4
Weak id. K-P F-stat 3394.3 3470.9 29.66 67.40
Division FE No Yes Yes Yes
Day of Week/Month FE No No Yes No
Date FE No No No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table displays estimates from a fixed effects instrumental variables regression. Work
is instrumented with leave of coworkers, seniority and cumulative potential contacts. Col-
umn 4 is called the proxy model in the paper, as it denotes the model which would have
been estimated if the outcome was continuous. Several weak instrument and overidenti-
fication tests are displayed under the coefficient estimates. Each column adds additional
controls. Standard errors are clustered at the officer level.
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Table B.14: Balance Test: Regression of Medical Expenses Paid on Instruments

(1) (2) (3) (4) (5)
Coworkers on Leave -34.17 -34.17 -15.19 3.865 -112.8

(33.82) (33.82) (51.04) (49.36) (136.4)

Age 34.85 34.85 24.94 12.21 110.6
(33.77) (33.77) (26.41) (27.25) (128.2)

Wage 69.89 69.89 25.04 8.804 -62.47
(107.4) (107.4) (116.4) (123.3) (330.8)

Seniority Rank 4.654 4.654 8.538 5.421 23.74
(11.28) (11.28) (12.80) (12.87) (32.36)

Observations 257 257 257 257 257
First-Stage F. 0.447 0.447 . . .
Division FE No No Yes Yes Yes
Month FE No No No Yes No
Date FE No No No No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This table presents regressions of medical expenses on the instruments. Time
averages of age, leave of coworkers, cumulative officer potential contacts, seniority
rank and wage are included in all specifications. This is a balance test of the
instruments, and if the exclusion restriction holds we would see no relationship
between each variable and the outcome. The lack of significant coefficients is evi-
dence in favor of the exclusion restriction. Each column adds additional controls.
Standard errors are clustered at the officer level.
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Table B.15: Labor Supply Elasticities

Private Injury Risk Quantile Elasticity

0.15 0.382
(0.143)

0.30 0.642
(0.133)

0.45 0.939
(0.164)

0.60 1.319
(0.337)

0.75 1.873
(0.738)

0.90 2.928
(1.312)

The table displays the average work probability
(labor supply) elasticity conditional on different
values of unobserved injury propensity. Labor sup-
ply becomes less elastic as injury propensity rises.
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