Is Tipping Economically Meaningful? Evidence from the Beauty Industry

Jacob Kohlhepp & Daniel Ober-Reynolds

UCLA

March 15, 2021

Is tipping economically meaningful?

Does tipping depend on service quality or repeat interaction?

A Simple Story

- 1. Consumer pays an upfront price for a service.
- 2. Service provider exerts costly effort which impacts quality.
- 3. After receiving the service and observing quality, the consumer may leave a tip.
- 4. In SPNE (without repeat interaction), consumer leaves quality invariant tip of \$0, provider does not exert effort.
- 5. Without some social cost or behavioral norm, the outcome will be inefficient.

- Tipping is a large phenomena in the US.
 - Estimate: total tips in the US \$36 billion in 2016 (Shierholz et. al 2017)
- Lots of heterogeneity across countries regarding tipping.
 - No tipping in Taiwan
- Individual tipping behavior can be nudged.

Preview of Results

- 1. Evidence of **incentive-relevant** tipping: returning customers tip more than one-time customers.
 - On average returners tip 0.34% more.
 - ► The returner distribution looks like FOSD shift of one-timer distribution.
- 2. Suggestive evidence that this is because the tip norm is sensitive to quality.
- 3. No evidence this is due to concerns about the future.

- 1. Repeat restaurant customers do not tip more [Ofer (2007)].
- 2. Study of Uber riders: 60% never tip, 1% always do [Chandar et. al. (2019)].
- 3. Tipping is sensitive to service quality [Changer et. al. (2019), Conlin et. al. (2003)].

Data

- Salon management software.
- Observe each transaction, can track customers over time within salon.
- All analyses look at the % of the bill the tip represents (tip divided by price).

We focus on salons providing hair-related services. This yields a sample of:

- 157,510 appointments
- 81,691 clients: 62% are one-timers, 38% returners
- 5,235 stylist teams
- 113 locations (firms)

Caveat: We focus on the 11% of client-teams where tips are always observed. 84% never have a tip observed. The rest have a mixture.

Table of Contents

1 A Simple Framework

2 Testing for Incentive-Relevant Tipping

3 Mechanisms

4 Conclusion

A Simple Framework

Denote the unobserved quality of a haircut as q.

Definition 1

The perceived tipping social norm of customer *i* for stylist-team *j*, denoted $\bar{b}_{i,j}(q)$, is the tip the customer would leave if they were myopic.

Intuition: This is the tip that would be left if the customer expects to never see the stylist again. We call this the "Uber tip." *Note that it may depend on quality.*

A Simple Framework

Denote the observed tipping function $B_{i,j}$, the optimal tip when the customer plans to return $b_{i,j}^*(q)$, and the return decision $r_{i,j}$. $r_{i,j}$ depends only on quality and maybe an idioscrynatic shock which is independent of everything else:

$$B_{i,j}(q) = r_{i,j}(q)b_{i,j}^*(q) + (1 - r_{i,j}(q))ar{b}_i(q)$$

Definition 2

Tipping is **incentive-relevant** if $B_{i,j}(q)$ changes with service quality, q.

Notice that incentive-relevant tipping can come from two sources:

- Norm-based: If the tipping norm, $\bar{b}_{i,j}(q)$, increases in quality.
- Forward-looking: If $r_{i,j}(q)$ is increasing in quality and $b_{i,j}^*(q)$ is greater than the norm.

Table of Contents

1 A Simple Framework

2 Testing for Incentive-Relevant Tipping

3 Mechanisms

4 Conclusion

Empirical Strategy

Idea: Customers know when they are not returning, and this makes them default to the norm. Re-write the equation from before suppressing q:

$$B_{i,j}=(b^*_{i,j}-ar{b}_i)r_{i,j}+ar{b}_i$$

it can be shown that this can be re-written in the familiar form:

$$B_{i,j} = \beta_M r_{i,j} + \beta_0 + \epsilon_{i,j}$$

where β_0,β_M are constants and $\epsilon_{i,j}$ is a zero-mean random variable. Full Derivation

Empirical Strategy

Under the null hypothesis that tipping is not incentive-relevant $E[r_{i,j}\epsilon_{i,j}] = 0$ because:

- 1. $E[u_{i,j}r_{i,j}^2] = 0$: Since $r_{i,j}$ depends only on $q_{i,j}$ and is independent of zero-mean $u_{i,j}$. 2. $E[\bar{b}_i|r_{i,j}] = \beta_0$: \bar{b}_i does not depend on q.
- 3. $\beta_M = 0$: Tipping should not change based on whether a client plans to return.

Thus a regression of tip percentage on a return indicator and a constant identifies β_0, β_M .

We can check for incentive-relevant tipping by testing if $\beta_M = 0$.

Results: Percent Tip Regressed on Returner Indicator

Model:	(1)	(2)	(3)	(4)	(5)
(Intercept)	0.2093*** (0.0008)				
Returners	0.0087***	0.0078***	0.0045***	0.0034**	0.0034**
	(0.0014)	(0.0014)	(0.0014)	(0.0015)	(0.0015)
Fixed-effects					
Firm		Yes			Yes
Team			Yes	Yes	Yes
Date				Yes	Yes
Observations	104,996	104,996	104,996	104,996	104,996

Note: 4 observations with a tip greater than 1,000% of price were removed.

Returner vs. One-Timer Distributions

Note: Limited to tips less than 60% for better visualization.

First-Order Stochastic Shift

Note: Limited to tips less than 60% for better visualization.

Table of Contents

1 A Simple Framework

2 Testing for Incentive-Relevant Tipping

3 Mechanisms

4 Conclusion

Dynamic Concerns

If the result is driven by concerns about seeing the same stylist again, then we should see that among returners, the last tip is **lower** then the second-to-last tip. But we do not:

Model:	(1)	(2)	(3)	(4)	(5)
Last	0.0015	0.0014	0.0015	0.0037	0.0038
	(0.0016)	(0.0016)	(0.0017)	(0.0026)	(0.0026)
Fixed-effects					
Client	Yes	Yes	Yes	Yes	Yes
Firm		Yes			Yes
Team			Yes	Yes	Yes
Date				Yes	Yes
Observations	28,708	28,708	28,708	28,708	28,708

Quality-Based Norms

The other reason: tips are **quality-based**. Quality is not observed, but we can proxy for it using the average tip given to the stylist by everyone else. We limit the population to just one-timers, although the result holds in the full population:

Model:	(1)	(2)	(3)	(4)
(Intercept)	0.1492***			
Avg Tip from Others	(0.0066) 0.2783***	0 2027***	0 2752***	0 2009***
	(0.0314)	(0.0335)	(0.0312)	(0.0332)
Fixed-effects				
Firm		Yes		Yes
Date			Yes	Yes
Observations	73,421	73,421	73,421	73,421

Note: This excludes 1,836 observations where stylist-teams are only observed with one client.

Table of Contents

1 A Simple Framework

2 Testing for Incentive-Relevant Tipping

3 Mechanisms

Conclusion

Main Finding: Tipping is incentive-relevant, and is sensitive to stylist quality. Tipping is not sensitive to repeat interactions.

Future Work

- 1. Estimate structural model where the tipping norm is quality-sensitive and clients search for stylists. See how the norm impacts efficient matches.
- 2. Apply a bounding technique developed by Daniel to the end result, to see how sensitive the results are to differences between the missing and non-missing tips.
- 3. The software company is interested in running an experiment where the default tip options are changed for some firms.

More Past Work

- Repeat restaurant customers do not tip more (Ofer (2007)).
- 60% of Uber riders never tip, 1% always do.(Chandar, Gneezy, List, and Muir (2019))
- Tipping is sensitive to "nudges." (Chandar et. al (2019) & Haggag and Paci (2014))
- Tipping is sensitive to sports team wins (Gi 2018)
- Riders that match with the same driver again tip 27% more. (Chandar, Gneezy, List, and Muir (2019))
- Tipping is sensitive to service quality (Changer et. al. (2019), Conlin et. al. (2003)).

Derivation

$$B_{i,j}=(b^*_{i,j}-ar{b}_i)r_{i,j}+ar{b}_i$$

Denote the mean of the coefficient on $r_{i,j}$ as:

$$\beta_M := E[b_{i,j}^* - \bar{b}_i]$$

Then use this to decompose the random coefficient:

$$u_{i,j} := b_{i,j}^* - \bar{b}_i - \beta_M$$

where $u_{i,j}$ is a zero-mean random variable. Then we have:

$$B_{i,j} = \beta_M r_{i,j} + \bar{b}_i + u_{i,j} r_{i,j}$$

which can be re-written as:

$$B_{i,j} = \beta_M r_{i,j} + \beta_0 + \epsilon_{i,j}$$

where β_0 is a constant intercept and $\epsilon_{i,j}$ is a zero-mean random variable.

